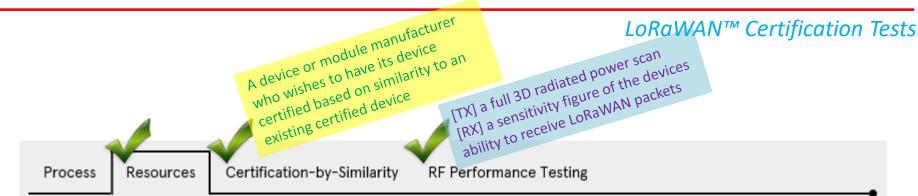
Testing of LoRa® in Development & Manufacturing

RedwoodComm

Contents


LoRaWAN™ Certification Tests

LoRaWAN™ Certification Tests

- Protocol Certification
- RF Performance
- Pre-Certification Tests
 - Necessity of Pre-Certification
 - Requirement of Pre-Certification Tester
 - Pre-Certification & RF Performance Tests
- Semtech's Gateway Tests
- LBT Test
- Manufacturing Tests

LoRa Alliance Certification Standards

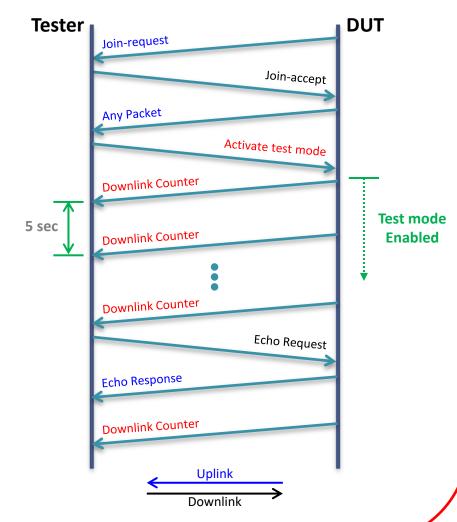
The documents below are available to all LoRa Alliance Members and can be found in the All Members/Certification folder within the Member Portal:

- LoRa Alliance Certification Policies and Procedures document*
- LoRa Alliance European EU 863-870MHz Region End Device Certification Requirements document V1.5*
- LoRa Alliance US902-928MHz Region End Device Certification Requirements document V1.3*
- LoRa Alliance Asia AS 923MHz Region End Device Certification Requirements document V1.1*
- LoRa Alliance South Korea 920-923MHz Region End Device Certification Requirements documentV1.2*
- LoRa Alliance India IN865-867MHz Region End Device Certification Requirements document 1.0*
- LoRa Alliance Customer Questionnaire V2.0 document*
- GitHub link to reference code https://github.com/Lora-net

3

^{*}Documents are exclusively available to LoRa Alliance Members via the Member Portal

Overview of LoRa® Certification Test


LoRaWAN™ Certification Tests

Purpose

 To confirm the End Device meets the Functional Requirements of the LoRaWAN™ protocol specification

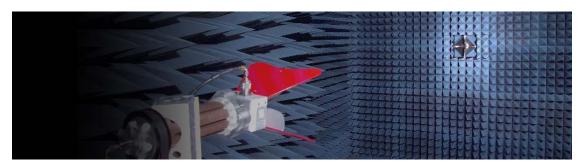
Test Mode Activation

- End Device should support test mode
- Should periodically report the number of DL packets using Downlink_Counter packet
- Should support Echo commands;
 EchoRequest & EchoResponse

Protocol Certification Test (e.g. EU)

LoRaWAN™ Certification Tests

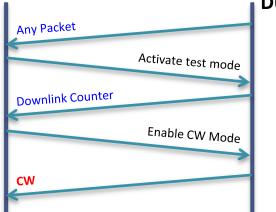
- Test Application Functionality
 - Periodic downlink counter, Echo command
- Over The Air Activation
- Cryptography
 - AEC encryption, MIC
- Downlink window timing
 - Timing offset tolerance
- Frame sequence number
 - FCntUp, FCntDown
- MAC commands
 - DevStatusReq, Invalid Command, NewChannelReq, RXParamSetupReq, LinkADRReq
- Confirmed Packets
 - Acknowledgement, UL/DL retransmission
- Packet Error Rates
 - SF12~SF7 for RX1 and RX2 windows, at least 60 DL packets, 95% reception



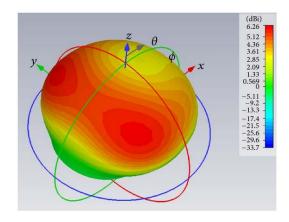
RF Performance Tests

LoRaWAN™ Certification Tests

- Main Requirement
 - For the 868 MHz ISM band, the device should not radiate in excess of 14 dBm (or 25 mW) ERP for any orientation
 - Receiver performance is important as Transmitter
- The pass/fail criteria is <u>deliberately not defined</u> by the LoRa Alliance™ (but requested by LoRaWAN™ operators)
- End-device Requirements for Testing
 - Should fulfil the LoRaWAN™ specification version 1.0.2 or newer
 - Should implement CW transmit mode via OTA commands
 - Should integrate the antenna or at least provide one

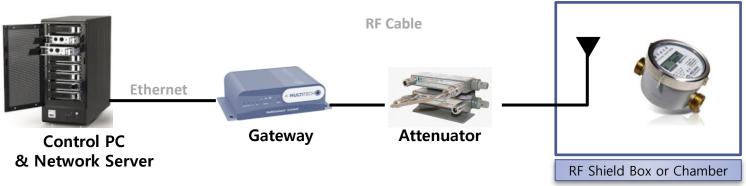


Transmitter Performance


LoRaWAN™ Certification Tests

- Channels
 - 863.1 MHz (low), 868.3 MHz (default, RX1 window), 869.525MHz (high, RX2 window)
- DUT should transmit CW signal (max output power)
- RMS detector is used (RBW: 100kHz)
- The result of the measurement shall be a full 3D radiation power pattern
 - ERP (φ, ϑ) = EIRP (φ, ϑ) G_{dipole}
 - G_{dipole}: the gain of an ideal dipole antenna (2.15dBi)

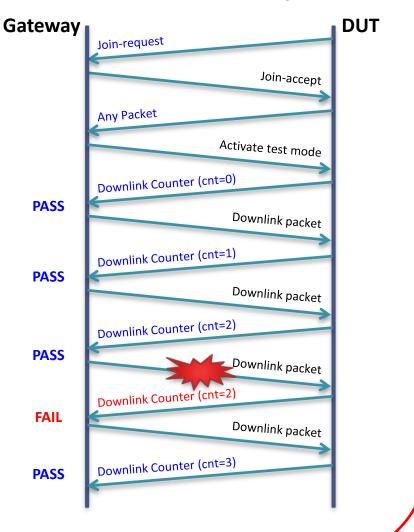
DUT



Receiver Performance (1/2)

LoRaWAN™ Certification Tests

- RX performance is described with the effective isotropic sensitivity EIS (φ, ϑ)
- RF Parameters
 - Channel: 868.3 MHz (RX1), 869.525 MHz (RX2)
 - BW: 125kHz
 - SF7(DR5) and SF12(DR0)
- The angle is chosen from a region where the antenna gain is stable



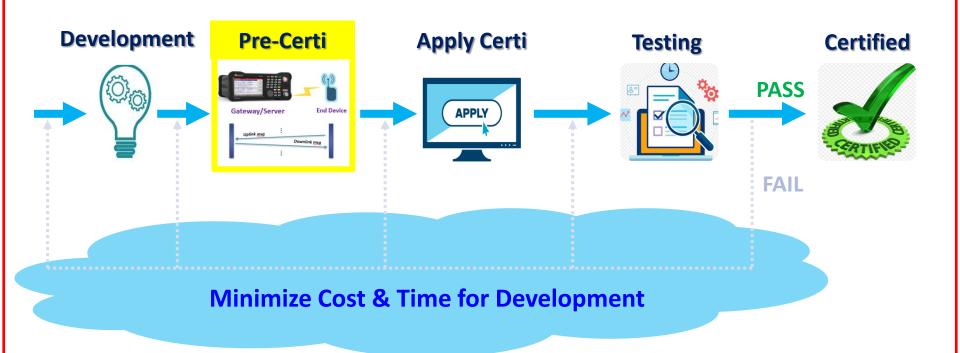
Receiver performance (2/2)

- Test at least 60 packets
- Sensitivity threshold
 - Attenuate the gateway TX
 power level with a precise RF
 step attenuators to achieve
 90% reception of packets in
 the respective position of DUT
 - The power value is recorded along with the direction it has been measured

LoRaWAN™ Certification Tests

Contents

- LoRaWAN™ Certification Tests
 - Protocol Certification
 - RF Certification
- Pre-Certification Tests
 - Necessity of Pre-Certification
 - Requirement of Pre-Certification Tester
 - Pre-Certification & RF Performance Tests
- Semtech's Gateway Tests
- LBT Test
- Manufacturing Tests



Development without Pre-Certification

Development with Pre-Certification

Requirement of Pre-Certification Tester

- Fulfil LoRaWAN™ specification V1.0.2 or newer
 - Flexible configuration of protocol and test parameters
- Support various regions
- Accurate TX power control down to -150dBm
- Accurate RX power measurement
- Same Test Result as Certification Test system
- Easy to use, compact to move

Why Need a Dedicated LoRaWANTM Tester

Ethernet

Gateway

Attenuator

RF Shield Box or Chamber

Pre-Certification Tests

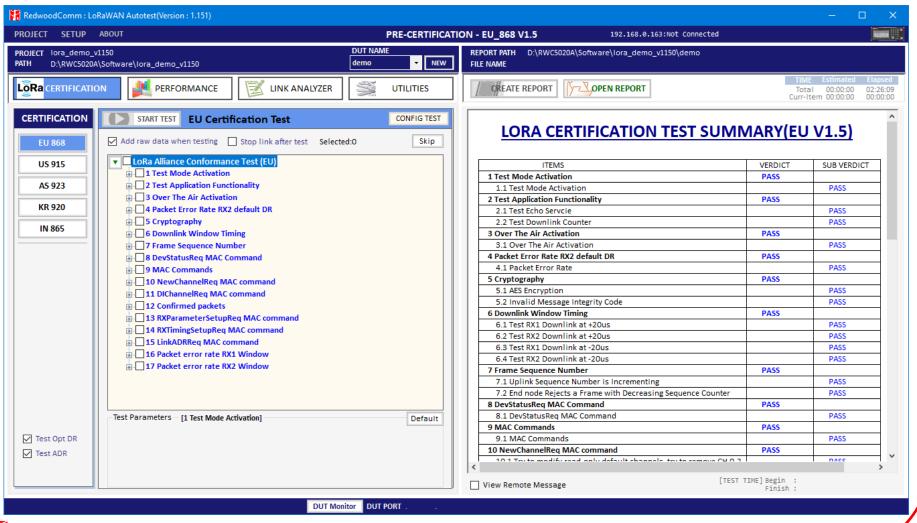
Control PC & Network Server

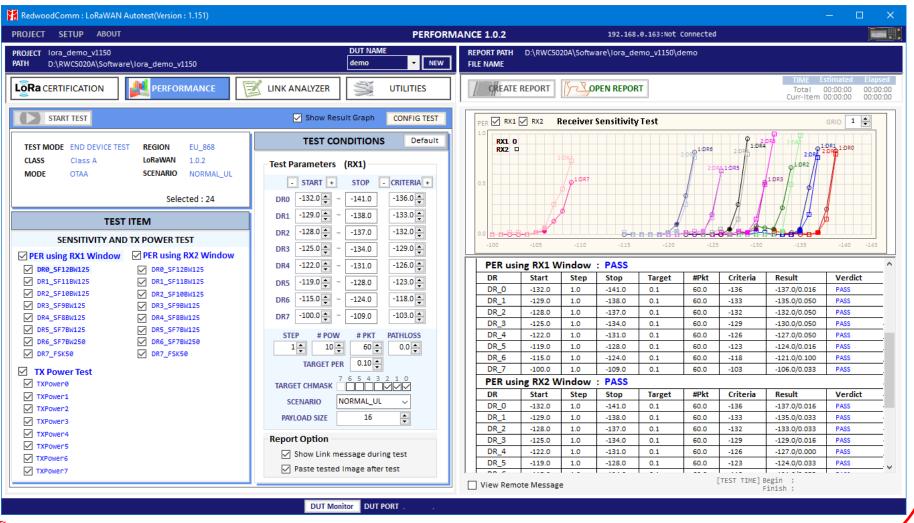
Not easy to control Network server and Gateway Various regional gateways required

Difficult to make very low signal using step attn.

- √ Simple & compact
- ✓ Multiple regions
- √ -150dBm

Dedicated LoRaWAN™ Tester


RF Cable


RF Shield Box or Chamber

LoRaWANTM Pre-Certification Tests

RF Performance Tests

Contents

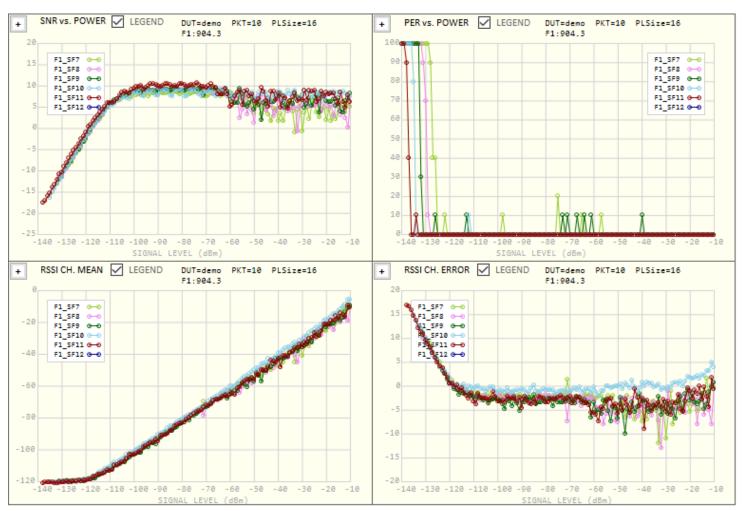
- LoRaWAN™ Certification Tests
 - Protocol Certification
 - RF Certification
- Pre-Certification Tests
 - Necessity of Pre-Certification
 - Requirement of Pre-Certification Tester
 - Pre-Certification & RF Performance Tests
- Semtech's Gateway Tests
- LBT Test
- Manufacturing Tests

Test List

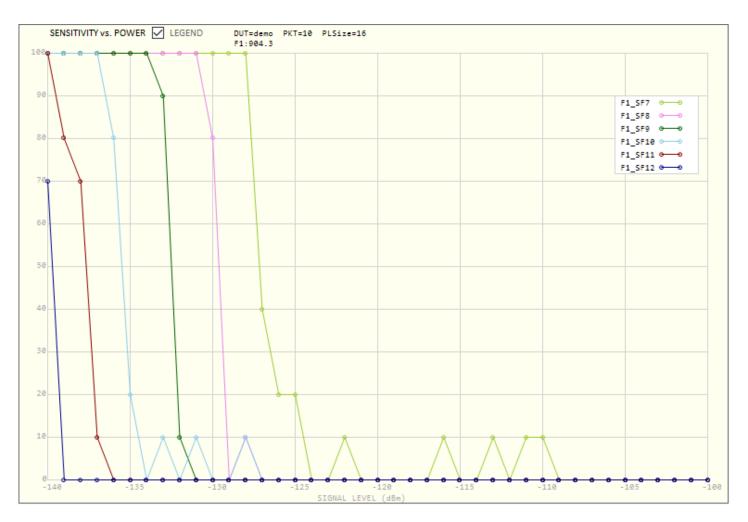
Semtech's Gateway Tests

GW V2 Non-regression Tests – EU 868

- TX output Power Calibration
- Sensitivity
- PER/RSSI/SNR
- Frequency Error Tolerance
- CW Interferer/Blocker Immunity



Test Setup



Example. PER/RSSI/SNR

Example. Sensitivity

Example. CW Interferer Immunity

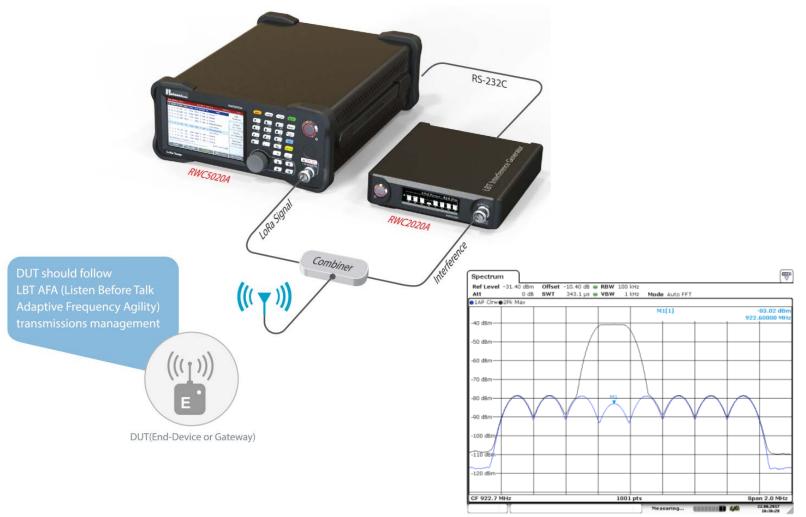
Contents

LBT Test

LoRaWAN™ Certification Tests

- Protocol Certification
- RF Certification
- Pre-Certification Tests
 - Necessity of Pre-Certification
 - Requirement of Pre-Certification Tester
 - Pre-Certification & RF Performance Tests
- Semtech's Gateway Tests
- LBT Test
- Manufacturing Tests

LBT


LBT Test

- Listen Before Talk
 - to prevent interference or collision between devices on common frequency channels
- How To Test LBT
 - Use RWC2020A Interference Generator as an interferer
 - For details, refer to the Local Regulations of Japan and Korea

LBT Test Setup

LBT Test

Contents

Manufacturing Tests

- LoRaWAN™ Certification Tests
 - Protocol Certification
 - RF Certification
- Pre-Certification Tests
 - Necessity of Pre-Certification
 - Requirement of Pre-Certification Tester
 - Pre-Certification & RF Performance Tests
- Semtech's Gateway Tests
- LBT Test
- Manufacturing Tests

Considerations on Manufacturing

Manufacturing Tests

- What needs to be tested in Production lines
 - Transmit Power
 - Receiver Sensitivity (PER)
- Selection of test mode
 - Test Time
 - Non-signaling mode is preferred than Signaling mode
 - Target Device Type
 - Non-signaling mode is applicable to both End-device and Gateway
 - Wired Control of DUT
 - It may increase test time and complexity
- Our Proposals for Automation
 - Separate T/RX Tests
 - Simultaneous T/RX Tests (called MFC Test)

Manufacturing Solution 1

Manufacturing Tests

Separate T/RX Test with SG/SA

DUT

End-device or Gateway

SF, BW, length, ... Frequency, Low TX Power

Number of packets

- Configure the test packet
- Repeat sending packets
- > Stop

Signal Generator

- > Enter RX Test Mode
- Count # of packets rcvd
- Calculate PER

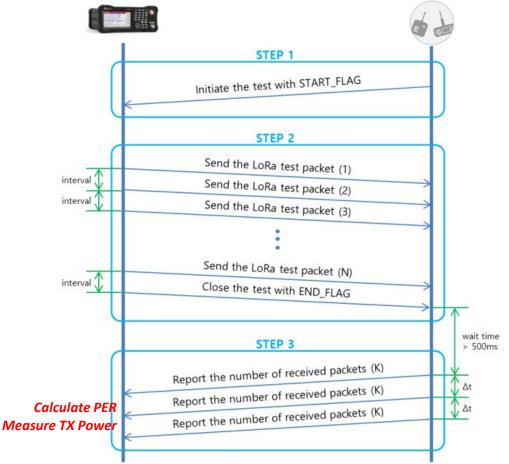
Any form of LoRa test packets can be generated with various flexible protocol parameters

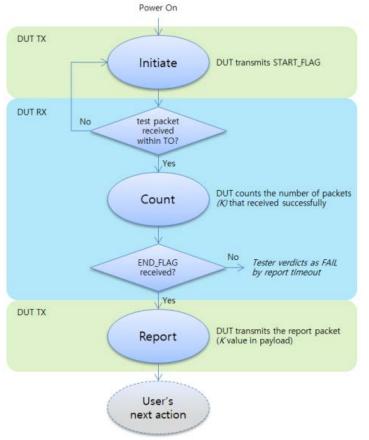
SF, BW, ... Frequency

- Configure the receiver
- Measure TX Power

Signal Analyzer

- > Enter TX Test Mode
- Repeat sending packets
- > Stop




Manufacturing Solution 2

Manufacturing Tests

Simultaneous T/RX Test with MFG APPlicable to all LoRa Applicable to all LoRa

Applicable to all LoRa products (end-devices & gateways)

Example of MFG Test Time

Manufacturing Tests

- Test time may depend on
 - SF
 - Payload length
 - Number of packets
 - Frame interval

Elapsed Test Time in sec

Number of packets	50	100	200
SF7	11	21	38
SF8	12	23	44
SF9	16	29	56
SF10	24	47	91
SF11	41	80	156
SF12	76	148	292

Determine the best test condition for your manufacturing tests!

Feedback

Thank you

Questions?

Darby Cho

Manager of Sales and Technical Support

darby@redwoodcomm.com

+1-604-720-8717

http://www.redwoodcomm.com

